
Story	Board:	Laser	Cutter	
	

Larisa	Thorne	
2015-12-09	

	
	

As	my	Term	Project	 for	 the	course	15-112	at	CMU,	 I	 chose	 to	make	a	 laser	
cutter.		This	project	will	be	divided	into	two	parts:	hardware	and	software.		

For	demos:	 use	ArduinoPySerialTest2.ino	+	 testSerial2.py	 (Arduino:	 servo),	
and	LaserCutter4.py	(PIL/Pillow,	Tkinter).	

I	want	to	take	advantage	of	the	current	DIY	age	of	open	source	and	affordable	
parts	 (most	 recently,	Raspberry	Pi’s	 $5	microprocessor	 “Zero”!),	 and	use	 this	 as	 a	
building	 block	 for	 later	 more	 advanced	 projects.	 I	 want	 to	 build	 a	 laser	 cutter	
because	the	basic	parts	(XY	table,	lasers,	and	programming)	are	sort	of	open-ended	
and	 come	up	 in	 a	 lot	 of	 applications.	These	might	 include	 cases	where	one	would	
want	 (1)	 extreme	precision/control	 of	motion	or	 (2)	 control	 something	without	 a	
human	in	the	room.	And	example	of	the	latter	could	be	moving	a	radioactive	target	
in/out	of	a	~12GeV	electron	beam’s	path.		

For	a	more	high-level	treatment,	see	program’s	readme	file.	
	

	
Hardware:	
	

From	“Project	Proposal”:	
	

“On	a	most	basic	level,	I	will	need	to	construct	what	is	known	as	an	‘XY	table’,	
and	affix	a	laser	to	the	carriage.	

The	XY	table	consists	of	an	aluminum	support	 frame,	with	two	stationary	Y	
stepper	 motors,	 which	 will	 support	 a	 moving	 carriage	 for	 the	 single	 X	 stepper	
motor.	The	Y	stepper	motors	are	attached	to	the	aluminum	frame,	and	the	X	stepper	
motor	 to	 the	 Y	 timing	 belt	 pulley,	 with	 specially	 3D-printed	 parts.	 They	 will	
move/rotate	a	timing	belt	pulley.		

The	 ‘platform’	 which	 the	 two	 Y	 stepper	 motors	 support	 will	 be	 a	 rigid	
structure,	supported	by	two	rods.	These	rods	will	support	 the	carriage,	which	will	
be	attached	to	a	point	on	the	X	timing	belt	pulley,	which	will	contain	the	laser.	“	

	

	
	

For	 testing	 purposes,	 I	 choose	 to	 start	 by	 learning	 control	 of	 servos	 over	
serial	with	Arduino	before	moving	on	to	stepper	motor	control.	This	is	good	practice	
in	 writing	 a	 Python	 script	 that	 will	 take	 a	 list	 of	 numbers	 (in	 this	 case,	 angles	
between	0	and	180)	 in	a	specific	 format	(“###,”)	and	feed	them	one	by	one	to	the	
Arduino.	The	goal	is	to	make	the	Arduino	do	as	little	extra	work	as	possible.	

	
Having	 satisfactorily	 completed	 basic	 Arduino	 serial	 servo	 runs,	 I	 add	 the	

Adafruit	Motor	Shield	v2.3	on	top	of	the	Arduino,	and	supply	12VDC	from	extral	DC	
regulated	 power	 supply	 (since	 the	 power	 Arduino	 gets	 via	 USB	 is	 not	 enough	 to	
power	the	steppers).		
	
Components	 (currently	 constructed),	 where	 *	 denoted	 3D	 printed	 part,	 and	 the	
corresponding	picture	is	a	screenshot	of	the	.OBJ	file	
	

• Structural:		
o 4	x	Aluminum	“X”	bars:	

	
o 3	x	XL	timing	pulley	belts	

	
o 6	x	Timing	pulleys,	matching	stepper	motors	and	belts*	

	

o 2	x	Window	hardware	(roller)	

	
o 3	x	Stepper	motors	(12V	4-cable	bipolar	unit,	where	2	cables	per	coil)	

	

	
	

o 2	x	Y-Stepper-to-Bar	adapter*	

	
o 2	x	Pulley-to-Bar	adapter*	

	
o 1	x	X-Stepper-to-Pulley	adapter	(top,	bottom)*	

	
o 1	x	Pulley-to-Carriage	adapter*	

	
	

• Electronics:	
	

o 1	x	Arduino	Uno	

o Jumper	cables	(+	associated	soldering	supplies)	
o 2	x	Adafruit	Motor	Shield,	v2.3	(for	stepper	driving)	

	
• Wishlist:	

	
o Heat	sink/fan	
o Laser	that	will	burn	paper	(>20mW)	
o Laser	driver	

	
	
	
Some	pictures	of	current	progress	in	assembling:	

	

		 	
	

Figure	1:		
		Left:	Demonstrates	how	the	X	carriage	will	be	attached	to	the	Y	stepper.	

Right:	View	of	the	window	hardware	roller	used	as	a	sliding	mechanism	for	the	X-carriage-to-Y-
Pulley	motion.	

	
	

		 	
	

Figure	2:		
Left:	How	the	X	stepper	will	be	affixed	to	the	X	carriage.	

Right:	X	stepper	mounted	to	carriage.	

	
	

Figure	3:	Arduino	+	Adafruit	Motor	Shield,	v2.3.	(See	video)	

	
	

Figure	4:	
Left:	Complete	XY	table.	Middle:	X	carriage.	Right:	Y	carriage.	

	

	
	

Figure	5:	Tapped	pulleys,	added	set	screws,	so	no	sliding.	
	
	

	 	 	
	

Figure	6:		
Left:	Adding	extra	wiring.	Middle:	Preparing	to	solder	connections.	Right:	Solder	connection.	

	

																	 			 	
Figure	7:	Left:	Testing	laser.	Right:	X-Carriage,	with	laser	(L)	and	pencil	(R).	

	
	

	
	

Figure	8:	The	finished	table.	
	

	
Software:	
	

From	“Project	Proposal”:	
	
“The	role	of	the	software	is	to	take	an	input	bi-color	image	(black	and	white),	

and	 to	 do	 some	 operation	 on	 it	 that	 will	 translate	 to	 motion	 of	 the	 carriage	
containing	the	laser	head.	
	

The	method	for	translating	bi-color	image	to	Arduino	movement	instructions	
involves	the	use	of	backtracking.	First,	create	a	2D	list	containing	pixel	location	and	
color	 from	 original	 input	 image.	 This	 then	 becomes	 a	 ‘backtracking/floodfill’	
problem,	 different	 in	 flavor	 than	 previously	 encountered:	 we	want	 to	 go	 through	
each	 pixel	 of	 the	 image	 and	 ask	 if	 it’s	 the	 beginning	 of	 a	 line.	 If	 so,	 look	 at	 the	
adjacent	eight	pixels	for	more	black	pixels,	with	indicate	a	continuation	of	the	line	in	
that	direction.	This	 involves	recursion,	where	the	base	case	would	be	arriving	at	a	
black	pixel	that	is	either	(1)	surrounded	by	non-black	pixels	or	(2)	any	black	pixels	
around	it	have	already	been	visited.	The	recursive	case	allows	us	to	‘climb’	back	up	
the	line	to	investigate	branches,	where	our	original	line	split	into	multiple	lines.	

	

	
The	 total	 path	 traced	will	 be	 stored	 in	 a	 list,	 which	 will	 be	 handed	 to	 the	

Arduino	when	it’s	finished,	so	that	it’s	not	done	in	real-time.”	
I	wrote	the	software	code	in	steps	(version	denoted	by	the	#	in	file	of	 form	

“LaserCutter#.py).	A	description	of	 the	 goal	 of	 the	version	will	 be	provided	at	 the	
top.		Simple	test	images	will	be	used,	which	will	be	located	in	the	same	directory.	I	
will	 create	 separate	 files	 for	 Arduino	 control	 (version	 denoted	 by	 the	 #	 in	
“ArduinoPySerialTest#.ino”).	

Created	an	additional	function	within	main	code	to	format	the	current	pixel	
path:	the	first	location	is	in	(row,	col)	format;	each	following	pixel	location	is	(drow,	
dcol).	Split	the	path	locations	into	two	independent	components,	X	and	Y,	and	feed	
them	 (alternating)	 to	 the	 Arduino,	which	 relays	 the	 command	 to	 the	 two	 stacked	
Adafruit	MotorShields.		

GUI	information	currently	includes:	file	name,	dimensions	in	terms	of	pixels,	
estimates	for	cut	time	(based	on	serial	sleep	times,	number	of	pixels);	and	after	cut	
initiated:	countdown	timer	tells	how	much	time	left.	Five	buttons:	one	to	open	file,	
one	to	start	the	cut,	one	to	stop	the	cut,	one	to	save	the	pixel	path	of	the	cut	image,	
and	one	to	return	to	the	welcome	page.	At	start,	“cut”,	“save”	and	“stop”	are	disabled.	

Once	run	begins,	“stop”	becomes	available	and	“open”	 is	disabled.	When	run	done,	
“stop”	is	disabled,	but	“save”	is	enabled.	“Stop”	kills	both	the	stepper	motion	and	the	
laser,	for	safety.	

	
How	the	GUI	should	look:	

	

	
	
	 How	GUI	currently	looks:	

	

	
	

	
Figure	1:	

Left:	Welcome	page.	Middle:	Load	file	request.	Right:	Loaded	file,	ready	to	cut.	

	
Figure	2:	

Left:	Cutting	in	progress.	Middle:	Finished	cut.	Right:	Saving	pixel	path.	

	
Figure	3:	

Left:	In	a	separate	instance,	loading	same	image.	Right:	Sees	that	pixel	path	already	exists,	asks	if	
should	use	it.	

	
	
Improvements	I	can	make:	
	

• No	pencil:	drags/snags	and	draws	inaccurate	representation	of	what	laser	is	
doing.	

• Change	track	design:	
o Instead	 of	 having	 x	 platform	 attached	 to	 pulley/rollers,	 maybe	 can	

have	y’s	sliding	along	rods.	
o Currently,	 sometimes	 the	 jerking	motions	 from	x	 carriage	 throw	 the	

y’s	off	track.	
• Use	different	connection,	other	than	serial.	

o Seems	 that	 serial	 connection	must	 sleep	 at	 least	 1.5	 -	 2	 seconds	 in	
between	movements,	or	you	get	either	nothing,	or	steppers	that	won’t	
stop	rotating.		

• A	laser	that	actually	burns	through	paper!		
o Currently	 have	 20mW	 of	 405nm.	 Not	 enough	 to	 even	 scorch	 black	

paper.	Research	suggests	need	50mW,	maybe	even	100mW.	See	laser	
pointer	forum	link	in	“Resources”.	

• During	TP	User	Study,	the	only	suggestion	that	was	made	was	for	me	to	add	a	
feature	 where	 I	 can	 allow	 the	 user	 to	 edit	 the	 image	 to	 be	 cut	 from	 the	
interface	(ex.,	add	a	pixel).	It	sounds	like	a	great	idea,	but	I	couldn’t	integrate	
it	 in	 the	 time	 that	was	 left.	 [Most	 people	 thought	 I	 did	 an	 ok	 job;	 no	 other	
suggestions.]	

	
	
Image	results:	
	
***Disclaimer:	the	pencil	snagging	and	track	derailing	were	real	problems	here!	The	
laser	was	doing	what	the	serial	said,	but	the	pencil	has	not	been	reproducing	
properly.	Even	between	two	separate	runs	of	the	same	instructions,	there	were	
differences.	I’ve	attached	the	best	I	could	get.	Seems	that	it’s	easier	to	get	best	
results	with	smaller	step	size	and	simpler/smaller	images.	

	
	

This	does	exactly	what	I	told	it	to:	need	to	keep	in	mind	that	I’m	artificially	blowing	
up	the	images,	and	I	am	intending	to	not	visit	the	same	pixel	location	twice,	because	
the	laser	shouldn’t	be	resting	in	the	same	position	more	than	once	(will	burn	what’s	
under	the	paper).	
	
Here	are	two	of	the	cases	where	I	had	problems	in	just	one	location,	but	rest	was	
fine.	The	pencil	wasn’t	quite	touching	the	surface	of	the	paper	in	the	beginning	of	
the	second	drawing	(the	surface	they	were	mounted	to	was	uneven;	I	tried	to	
compensate,	but	not	too	much	because	a	stuck	pencil	is	worse	than	a	snagged	one).	
Also,	I	stopped	the	first	run	after	I	saw	that	it	had	snagged	again,	but	I’m	including	it	
here	because	it	shows	a	better	view	of	the	top	part	of	the	image.	

					 		 				
		

